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MODERN QUANTUM MECHANICS

Quantum mechanics encompasses the wave-particle duality.

Particles do not travel along definite paths but are distributed
through space like a wave.

This is represented by the wavefunction, which is the central
guantity.

It contains all the information that can be accessed experimentally.
The WE is not itself measurable.

It depends on the coordinates of every particle.

It is represented by the Greek letter ‘psi’ W.




SCHRODINGER EQUATION

 The wavefunction is the solution of the Schrodinger equation.
* |t can be applied to all systems: electrons, atoms, molecules ...
 Time-dependent Schrodinger equation:
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ot 7w

Hamiltonian operator Wavefunction

 When the potential energy does not change with time:

HW(x) = BY(x) |

* There exists an operator for each experimentally observable property (energy, position,
momentum). Hamiltonian is the energy operator. The expectation value:
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HAMILTONIAN FOR HYDROGEN ATOM
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HAMILTONIAN FOR HELIUM ATOM

e Cannot be done analytically because it OE’ECWU” 1

has two electrons! ry- -I,
electron 2

 We can do it computationally, but it is o
exhausting: 8 electrons in a 6x6x6 grid nucleus @
require 10° GB.

O (origin of
coordinates)

B.O.
- T oA R aVr1 o VYrg o +
: 2 2 |I"1 — Rl ‘1'2 — R| ‘I‘l — I'2|
kinetic kinetic kinetic attraction of attraction of repulsion
energy of energy of energy of electron 1 by electron 2 by between
nucleus electron 1 electron 2  nucleus nucleus electrons 1

and 2




HAMILTONIAN FOR WATER MOLECULE
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ELECTRONIC WAVEFUNCTION

* Solutions of the electronic Schrodinger

equation are wavefunctions //
 They must be:

— Finite

— Continuous

— Single-valued good bad
— Antisymmetric

* They account for the

indistinguishability of electrons.
* Their square is a probability /\/ ﬂ/

distribution

good bad
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ELECTRONIC DENSITY

e The wavefunction is a function of 4 N, variables.

\Ij(rlawlj r?&wzj v ?riwreE?wNeI) — IIJ(Xl? X2y« ?Xf\“rel)

* The electronic density is a function of 3 variables and can be experimentally observed.

nir)=Nog [ - [ T (r.wy.ro,wo, . n W, )P(r wy. T, wa, - - TN W, ) dwydrows . .. dry , dwp
el el el el el el

* The electronic density tells us about the positions of the nuclei, atomic numbers and the total number

of electrons.
Nep = /n(r)dr

« How do we get the energy? Unfortunately, in the Schrodinger equation the wavefunction is required.

m




ELECTRONIC DENSITY

Solve Schrédinger equation

[ Hamiltonian

] )[ Wavefunction ]

Obtain
number of
electrons,
atomic

numbers,
atomic

positions

/r

[ Density ]—

o

Calculate energy
and other
experimental
observables from
wavefunction

Is there a way to go from the density
directly to the energy without having
to solve the Schrodinger equation?
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DENSITY FUNCTIONAL THEORY

* Can we solve for the electronic
density instead of the
wavefunction? flz) = 2?
* Hohenberg and Kohn in 1965 gz, y) = cos(z) + e 3V
laid the foundation for density
functional theory.

e What is a functional? A
“function of function”

@

FIfi= [ f(@)da
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DENSITY FUNCTIONAL THEORY

e Hamiltonian for the electrons is:

* The operator is Hermitian:

f l]:J{-"}!{d,l[ 1 H IIJE}C act d'f f I]:Jdpprgx approx {jﬂ:

Ee:sc act —

¢ f ‘Ijex act Vexact dr f v APProx dpprox dx

=F AppProx
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HOHENBERG-KOHN THEOREMS

* Let us use electron density as the basic

quantity, n. a7
, ——
* All properties of the system are Uk

determined by the ground state density. 5

* Each property is a functional of the
ground state.

* A universal functional exists (shown by H-
K). It is unfortunately not known.

 The ground state density minimizes the hi= [ (Z _71‘73) vax+ [ v (Z 3 _|r,fr..|) v [ v (Zvu) o
total energy functional (2" H-K) - I I S ;

, { / Vext (r)n(r) dfr] = Eqy[n]
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ELECTRONIC ENERGY

e \We can separate the electronic energy in the following contributions.

. N Na Na l N
-1_. 1
Erb = / IIJ* . ,-_2 lIJ J,X_ /\I’* II’ }X_ /\:[J* - ? ILII fX
3l (?Z_| 2 \_,) dX+ (E > - rj) dX+ ;:l Vet (1) )

i=1 j=i1+

Ee] — Ekin + E(jcml + Ex + Ez: + Eext

Where: if / n(r)n(r) drdr’ /Vm (r)n(r)dr
2) ) |r—1r/|

* kin: kinetic energy

* Coul: Coulomb energy

* X: exchange energy

* c: correlation energy

* ext: external potential energy

« Similarly, the H-K functional can be split into a sum functionals (we assume).

|

'm Fuk[n] = Exin[n] + Ecouln] + Ex[n] + Ec[n]




KOHN-SHAM EQUATIONS

* Doing ‘pure’ DFT is in principle possible.
* |n practice, it is not very accurate because we lack
good approximation for the kinetic energy

* Interacting electrons

* Exact Hamiltonian for
real molecule

* Non-Interacting electrons

= Approximate Hamiltonian

for real molecule

* KONnn->nam non-
interacting electrons

» Approximate Hamiltonian

functlonal for fictitious molecule
. ’-‘Q_“ T~ -~
* Kohn and Sham proposed an alternative approach s e g Le TN -t NN T
. . . \ [&] J \ \
* Let’s work with a system of non-interacting L0 e @) TS
electrons. - - -
* The wavefunction will be different but a fictitious \l/ \l/ \l/
non-interacting system is constructed with the
same electronic density as the interacting system. = , ° = b - 5 C
 We do not need to find a universal H-K functional.

We just need a functional of the fictitious system.
* The expression of the kinetic energy is now

Density of fictitious system of
non-interacting electrons (= exact

Density of non-interacting
electrons (=approximate

Density of interacting
electrons (=exact density)

density) density of interacting electrons)
known exactly.
Exact electronic Hamiltonian o
Ny Ny o N Fictitious
HelZZ—TVfJFZ(Z __1'1 )+E > T N, N, Ne
= 2 i1 \A=1 |l“, ‘,1| =1 =it |I‘t I‘J| N el 1 9 el el
N . Ny Ng N _ Hzr[l’ - Z _Evf + Z V:rxl. (ri} + Z Vew(rf)
_ _%vgq Vi (1) + L i=1 i=1 i=1
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KOHN-SHAM EQUATIONS

En] = Eiin ks[n) + (Ekin[n] — Exinxs[n]) + Ecoul [n] + Exc[n] + Eext 1]

Orbital-free approach Kohn-Sham approach
 Kohn-Sham approach is exact.
e Single-particle equations are p— N
. ind approximation for “ Fi )=
USEd Instead Of the many_ [ Fi:p [n] . ] Find a Veff(,(r}) VKS((I.; fUCh that
_ Nio(r) = ny(r
body wavefunction. = =5 °
What we don’t know is l l
crammed into the exchange Compute density n,(r) by Solve for the wavefunction
correlation minimising (Slater determinant) of the
. Note: Eigenvalues and E[n]=Fg[n]+E 4[n] nc?n-lnteractlng electroqs (i.e.
i find the molecular orbitals)
eigenvectors of the KS system l
have no physical meaning. Compute energy E[n,] ] J
* The electron density and the Build the density n(r) from
energy do. the molecular orbitals

Y
Compute energy E[n,]




SELF-CONSISTENT FIELD PROCEDURE

Select initial {'L.-'l'fn)}, n=0~0

v

Construct Kohn-Sham

Set

operator h\") = hys[{™}]

A 4

Solve f”fi?ltfffn—’_lj _ Si@n—l)wi('n.—l—l)

to obtain {y"""}

Are {2V} same as
(™} to within expected
tolerance?

l‘(es

DFT calculation converged
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Unit cell:
1. axis:
2. axis:
3. axis:
Lengths:
Angles:

Effective

iter: 1

iter: 2

iter: 3

iter: 4

iter: 5

iter: 6

iter: 7

iter: g

iter: 9

iter: 10

iter: 11

iter: 12

iter: 13

iter: 14

iter: 15

iter: 16

iter: 17

iter: 18

periodic
yes 10.
yes 5.
no 0.

10.210622
90.000000

grid spacing

b:4
210622
105311
000000

10.210622
90.000000

dv~(1/3) =

loglO-error:

time wts densi
12:56:20

12:56:52 -1.58 -1.17
12:57:22 -1.12 -1.24
12:57:53 -1.34 -1.43
12:58:27 -2.00 -1.50
12:59:01 -2.29 -1.70
12:59:32 -2.12 -1.84
13:00:01 -2.99 -1.90
13:00:30 -2.73 -2.06
13:00:59 -2.50 -=2.27
13:01:25 -3.41 -2.35
13:01:5¢ -3.89 -2.55
13:02:22 -3.44 -2.58
13:02:48 -4.42 -2.83
13:03:15 -4.87 -2.95
13:03:45 -4.21 -3.07
13:04:20 -5.31 -3.44
13:04:54 -5.18 -3.49

Y Z points
0.000000 0.000000 48
8.842658 0.000000 48
0.000000 18.252703 90

spacing
0.1842
0.1842
0.2028

168.252703
60.000000

0.1

o
o
[s)]

total iterations:
Lty energy
-349.959972
-320.920088
—-294.229872
—-297.578625
—-285.406400
—282.490025
—282.491436
—-281.668936
—-281.214343
-280.967638
—-280.818154
—-280.833332
—-280.748721
—-280.734465
—-280.729745
—-280.727703
—-280.724003
—-280.721088

poisson
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SOFTWARE: GPAW

e Density-functional theory and time-dependent DFT
e Uses the projector augmented wave method

e Supports various basis sets.

* Is massively parallelized

 QOpen-sourced under GPL

e Supports a wide range of XC functionals

GPAW!

» Total energies and forces, structural optimization, magnetic moments
* Analysis of electronic structure (band structure, density of states)

* Excited state properties (TD-DFT, GW, Bethe-Salpeter)

* X-ray spectra, STM images ...

O
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ATOMIC ORBITALS VS. PLANE WAVES

e Linear combination of atomic
orbitals (LCAO) as a compact basis
set.

e AOs are obtained from a free atom
in a confining potential well.

e Difficult to improve accuracy in a
systematic way.

Example:
P B

Ao

P(r) = crxi(r) +eaxa(r)+ezxs(r) +eoxa(r)+esxs(r)+cexe(r) +erxr(r)+. ..

\ ) \ ] | J
| | |

AOs on atom A AOs on atom B AOs on atom C

* Functions that are periodic with
respect to the unit cell can be
written as a sum of plane waves.

e Only periodic structures (but we
can cheat with vacuum).

* |Improving accuracy is easy.

Extended zone representation Reduced zone representation
2 2
€y 4
SH/N n .
°1.5
L3 4 bands
.‘.
1 1 !
0.5 0:5
....“"‘ "“".’ :g.A.n.....‘AIL.:t
2 15 1 05 0.5 1 1.3 2 05 0.5
<«2n/L l«—2n/L l«—2m/L l«—21/L —>I

n’=0,+1,42 +3,...

Reciprocal lattice
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ASE + GPAW

ASE is a Python package for
— Building structures
— Structure optimization and molecular dynamics
— Analysis and visualization

ASE uses external code: in our case GPAW
(supports a lot of codes)

Input files will be Python scripts

We run the calculations by calling these
scripts.

For simple calculations, you can do it locally.
Otherwise, scp to the supercomputer.

It has a graphical interface for visualization.

We can also use external visualization

@programs (Avogadro, VESTA, VMD ...)

ASE

s energies,
5% forces,
positions wis.
densities

Calculator
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GENERAL INSTRUCTIONS

 The exercises are in the directory
/home/kemijski/d13/Ex0X
(~/d13/Ex0X),N=1,3,4,5,6,7

* In every directory, there is a Python script that
executes the calculation.

* Yourunitas: gpaw python
<scriptname.py>

* The file ‘submit.sh’ is needed if you wish to execute
the script on the supercomputer.

* You need to scp the files to and from the
supercomputer (see the tutorial).

* The pre-calculated results are in folders
/home/kemijski/dl13/Ex0X/reference

J.t Data is visualized by ase gui <filename>
M

total 148

drwsrwxr-x

“PW-rW-r- -
drwxrwxr-x

9

a

(=)

1

kemijski
kemijski
kemijski
kemijski
kemijski
kemijski
kemijski
kemijski
kemijski
kemijski
kemijski

kemijski
kemijski
kemijski
kemijski
kemijski
kemijski
kemijski
kemijski
kemijski
kemijski
kemijski

(base) kemijski@KICLIENT:~/d13%

4856
4096
98279
4856
4096
4856
4896
4856
4856
4096
9854

123
: 47
2:27
24
122
122
122
122
122
122
:29 results.xlsx




EXERCISE 1

o

We will calculate the unit cell of copper.

We start from a reasonable (experimental) initial
approximation and calculate the energy for different
unit cell parameters (expanding the crystal).

The minimum in energy corresponds to the
equilibrium lattice constant.

We will calculate the bulk modulus from these data.

0E(V) _ ,02E(V)
Sy S0B =V—2=.

i, e-E[-1]

__yor — _
B = VaVand p =

0.000 +

—0.002 +

—0.004 4

—0.006 4

—0.008

-0.010 L,

******




EXERCISE 3

 We will calculate the energy of the Cu(111)
slab.

* |t consists of 11 layers, middle ones are fixed in
their bulk positions.

 The atoms in this slab have a larger energy
than in bulk. This is the surface energy.

Eciap — NEpyik
2A

 How would you calculate A (area)? Why is
there a factor 27

Lasulzrans
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EXERCISES 4-6

*  We will optimize the structure and calculate
the energy of a 4x4x4 slab of Cu(111) in / o | :
Exercise 4.

 We will optimize a benzene molecule in
vacuum and calculate its energy in Exercise 5.

* We will optimize the benzene molecule on the B e
slab and calculate its energy in Exercise 6. . T T
* From this, we will get the adsorption energy. = T
Eads - ESUT'f _ Egas Figu E-1] _ _
* The calculations are rather slow. You might

want to look at the pre-computed results.

0.0 1
T T T T T T T T T
0 5 10 15 20 25 30 35 40




EXERCISE 7

Done by: structures.py

 We will construct a 3x3x4 Cu(111) slab with an
adatom on the fcc site and optimize it.

 Then, we will move the adatom to the adjacent
fcc site and optimize.

Done by: neb.py

 Then, we will use the nudged elastic band
method to follow this ‘reaction’” and identify
the saddle (transition state) and activation
barrier for Cu-hopping.

e Activation barrier is the difference in energy
between the saddle point and initial state.

O

energy [eV]

Es= 0.060 eV; Er= 0.060eV; AE = 0.000 eV

1.5
path [A]

B R L LT EEEET R R
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